
Motor Controllers AC Semiconductor Motor Controller Types RSE 22 .. - B, RSE 4. .. - B, RSE 60 .. - B

- Soft starting and stopping of 3-phase squirrel cage motors
- Rated operational voltage: Up to 600 VACrms, 50/60 Hz
- Rated operational current: 3 A or 12 AAC 53 b
- Potential-free control input
- LED-indications for supply and operation
- Transient overvoltage protection built-in
- Integral bypassing of semiconductors

Product Description

Compact easy-to-use AC semiconductor motor controller. With this controller 3phase motors with nominal load currents up to 12 A can be soft-started and/or softstopped. Starting and stopping time as well as initial torque can be independently adjusted by built-in potentiometers.

Ordering Key	RSE 40 03 - B
Solid State Relay Motor controller E-line housing Rated operational voltage - Rated operational current - Control voltage	

Type Selection

Туре	Rated operational voltage U_e	Rated operational current le	Control voltage U _c *)
RSE: E-series, motor controller	22: 127/220 VACrms, 50/60 Hz 40: 230/400 VACrms, 50/60 Hz 48: 277/480 VACrms, 50/60 Hz 60: 346/600 VACrms, 50/60 Hz	z 12: 12 A	-B: 24 to 110 VAC/DC & 110 to 480 VAC

*) The control voltage should never be higher than the rated operational voltage.

Input Specifications (Control Input)

Control voltage U _c	
A1-A2:	24 - 110 VAC/DC ±15%,
A1-A3:	12 mA 110 - 480 VAC ±15%, 5 mA
Rated insulation voltage	630 V rms Overvoltage cat. III (IEC 60664)
Dielectric strength Dielectric voltage Rated impulse withstand volt.	2 kVAC (rms) 4 kV (1.2/50 μs)

Output Specifications

Utilization category	AC-53b Integral bypassing of semiconductors
Overload current profile	
(overload relay trip class)	
RSE03-B	3A: AC-53b:3-5:30
RSE12-B	12A: AC-53b:3-5: 180
Min. load current RSE03-B RSE12-B	100 mAAC rms 200 mAAC rms

Supply Specifications

Power supply Rated operational volt. (U _e)	Overvoltage cat. III (IEC 60664)
through terminals L1-L2-L3	(IEC 60038)
22	$127/220$ VAC rms $\pm 15\%$
	50/60 Hz -5/+5 Hz
40	230/400 VAC rms ±15%
	50/60 Hz -5/+5 Hz
48	277/480 VAC rms ±15%
	50/60 Hz -5/+5 Hz
60	346/600 VAC rms ±15%
	50/60 Hz -5/+5 Hz
Voltage interruption	≤ 40 ms
Dielectric voltage	None
Rated impulse withstand volt.	4 kV (1.2/50 μs)
Rated operational power	2 VA
supplied from	L1-L3

General Specifications

Accuracy	
Ramp up	5.5 - 7.5 s on max.
Ramp down	≤ 0.5 s on min. 6 - 10 s on max.
Initial torque	≤ 0.5 s on min. 70 - 100% on max. 5% on min.
EMC	Electromagnetic Compatibility
Immunity	acc. to EN 61000-6-2
Indication for	
Power supply ON	LED, green
Ramp up/down bypassing relay	LED, yellow
Environment	
Degree of protection	IP 20
Pollution degree	3
Operating temperature Storage temperature	-20° to +50°C (-4° to +122°F) -50° to +85°C (-58° to +185°F)
Screw terminals	
Tightening torque	Max. 0.5 Nm acc. to IEC 60947
Terminal capacity	$2 \times 2.5 \text{ mm}^2$
Approvals	CSA (<7.5 HP @ 600 VAC),UL, cUL
CE-marking	Yes

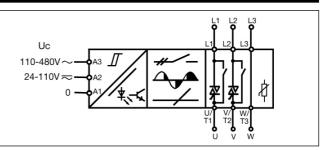
CARLO GAVAZZI

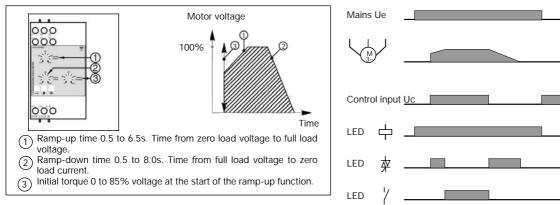
Mode of Operation

This motor controller is intended to be used to softstart/ softstop 3-phase squirrel cage induction motors and thereby reduce the stress or wear on gear and belt/chain drives and to give smooth operation of machines. Soft starting and/or stopping is achieved by controlling the motor voltage. During running operation the semiconductor is bypassed by an internal electromechanical relay.

The initial torque can be adjusted from 0 to 85% of the nominal torque. The soft-start and soft-stop time can be adjusted from 0.5 to approx. 7s.

A green LED indicates supply. Two yellow LEDs indicate Ramp up/down and Running mode.

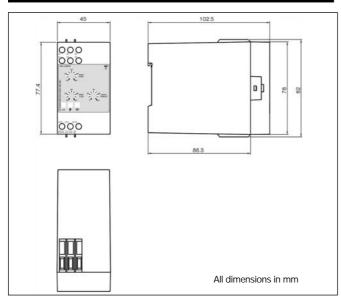

Overload protection is not provided in this motor controller and must therefore be installed separately.


The controller is switching 2 lines. The 3rd line is continuously connected to the load.

Semiconductor Data

Rated opera- tional current	I ² t for fusing t = 1 - 10 ms	I _{TSM}	dl/dt
3 A	72 A ² s	120 A _p	50 A/µs
12 A	610 A ² s	350 A _p	50 A/µs

Functional Diagram

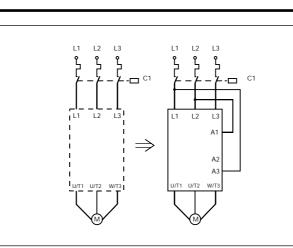

Operation Diagram 2

Specifications are subject to change without notice (30.09.2005)

Operation Diagram 1

CARLO GAVAZZI

Applications


Changing from Direct ON Line start to soft start (Line controlled soft-start) (Fig. 1 & Fig. 2)

Changing a Direct On Line start into a soft start is very simple with the RSE soft-starting relay:

- 1) Cut the cable to the motor and insert the RSE relay.
- Connect control input to two of the incoming lines. Set initial torque to minimum and ramp up and down to maximum.
- Power up again adjust the start torque so the motor starts turning immediately after power is applied, and adjust ramp time to the appropriate value.

When C1 is operated, the motor controller will perform soft-start of the motor. When C1 is switched off, the motor will stop, the motor controller will reset and after 0.5 s a new soft-start can be performed.

Please note that the controller does not insulate the motor from the mains. Contactor C1 is therefore needed as a service switch for the motor.

Fig. 1

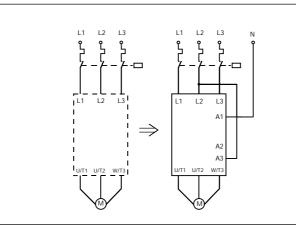


Fig. 2 For voltages higher than 480 VAC

Housing Specifications

Weight	270 g
Housing material	PC/ABS Blend
Colour	Light grey
Terminal block	PBTP
Colour	Ligh grey
Bottom clip	POM
Colour	Black
Diode cover	PC
Colour	Grey Transparent
Front knob	PA
Colour	Grey

Soft-start and soft-stop (Fig. 3)

When S1 is closed, soft-start of the motor will be performed according to the setting of the ramp-up potentiometer and the setting of the initial torque potentiometer. When S1 is opened, soft-stop will be performed according to the setting of the ramp-down potentiometer.

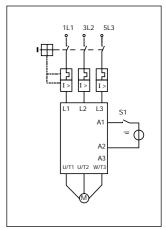


Fig. 3

Applications

Time between rampings

To prevent the semiconductors from overheating, a certain time between ramping should be allowed. The time between rampings depends on the motor current during ramping and ramp time (see tables below). **Note:** Table is valid for ambient temperature 25°C. For higher ambient temperature add 5%/°C to values in the tables. The shaded areas in the tables are for blocked rotor. Do not repeat rampings with blocked rotor.

Fusing Considerations

The motor controller provides by-passing of the semiconductors during running operation. Therefore the semiconductors can only be damaged by short-circuit currents during ramp-up and ramp-down function.

A 3-phase induction motor with correctly installed and adjusted overload protection does not short totally between lines or directly to earth as some other types of loads, e.g. heater bands. In a failing motor there will always be some part of a winding to limit the fault current. If the motor is installed in an environment where the supply to the motor cannot be damaged, the short circuit protection can be considered to be acceptable if the controller is protected by a 3pole thermal-magnetic overload relay (see table below).

If the risk of short circuit of the motor cable, the controller or the load exists, then the controller must be protected by ultrafast fuses, e.g. for a 3 A type: Ferraz 660 gRB 10-10, for an 12 A type: Ferraz 660 gRB 10-25. Fuseholder type PST 10.

RSE .. 03 - B

Time between rampings

Ramp time (sec.) I ramp (A)	1	2	5	10
18	15 sec	30 sec	1.5 min	2.5 min
15	12 sec	20 sec	60 sec	1.5 min
12	10 sec	20 sec	50 sec	70 sec
9	8 sec	12 sec	30 sec	50 sec
6	5 sec	9 sec	25 sec	40 sec
3	2 sec	5 sec	20 sec	35 sec
1.5	1 sec	2 sec	5 sec	5 sec

RSE .. 12 - B

Time between rampings

Ramp time (sec.)				
I ramp (A)	1	2	5	10
72	2.5 min	5 min	40 min	N/A
60	1.5 min	3 min	13 min	17 min
48	50 sec	1.5 min	5 min	10 min
36	30 sec	1 min	3 min	7 min
24	15 sec	40 sec	1.5 min	2.5 min
12	10 sec	20 sec	50 sec	70 sec
6	5 sec	9 sec	20 sec	40 sec

Recommended thermal-magnetic overload relay Selection Chart

Thermal-magnetic overload relay and motor controller

Motor full load current (AACrms)	0.1 - 0.16	0.16 - 0.25	0.25 - 0.4	0.4 - 0.63	0.63 - 1.0	1.0 - 1.6	1.6 - 2.5	2.5 - 4	4 - 6.3	6.3 - 9	9 - 12
Overload relay type GV 2- Manufacturer: Telemecanique	M 01	M 02	M 03	M 04	M 05	M 06	M 07	M 08	M 10	M 14	M 16
Overload relay type MS 325- Manufacturer: ABB	0.16	0.25	0.4	0.63	1	1.6	2.5	4	6.3	9	12.5
Motor protection circuit breaker type KTA 3-25- Manufacturer: Allan-Bradley/Sprecher + Schuh	0.16	0.25	0.4	0.63	1	1.6	2.5	4	6.3	10	16
Motor controller type: 127/220 V mains 230/400 V mains 270/480 V mains 400/690 V mains	RSE 22 03 - B RSE 22 12 - B RSE 40 03 - B RSE 40 12 - B RSE 48 03 - B RSE 48 12 - B RSE 60 03 - B RSE 60 12 - B				B						

Example:

Line voltage: 230/400 V Motor 1.5 HP: 1.1 kW Full load current: 2.9 A Step 1: Select overload relay: In this example GV 2 - M 08, MS 325 - 4 or KTA 3-25-4A must be used.

Step 2: Select motor controller: For line voltage 230/400 V and

overload, relay GV 2 - M 08 or MS 325 - 4 with a setting of 2.9 A type RSE 40 03 -B can be selected. N.B.: For motors with full load current from 12 A to 40 A, see types RSH and RSC/RSO.

Motor Controllers, Single Phase 3-Phase Torque Reduction Types RSE 1112-BS, RSE 2312-BS, RSE 4012-BS

Product Description

Compact easy-to-use AC semiconductor motor controller. With this controller single phase capacitor run induction motors with nominal load currents up to 12 A can be soft-started. Starting time as well as initial torque can be independently adjusted by built-in potentiometers.

Torque reduction by ramping of a single phase in 3-phase applications is also possible with this module.

Ordering Key	RSE 23 12 - BS
Solid State Relay Motor controller E-line housing Rated operational voltage – Rated operational current – Control voltage Single Phase Control	

Rated operational current: 12 AAC 53 b
Soft starting of most single phase motors
Torque reduction by use on 3-phase motors
Rated operational voltage: Up to 400 VAC, 50/60 Hz

LED-indications for supply and operation
Transient overvoltage protection built-in
Integral bypassing of semiconductor

Type Selection

Rated operational voltage U _e	Control voltage U _c	Rated operational current I_e 12 A		
11: 115 VACrms, 50/60 Hz 23: 230 VACrms, 50/60 Hz 40: 400 VACrms, 50/60 Hz	-B: 24 to 110 VAC/DC & 110 to 480 VAC	RSE 1112-BS RSE 2312-BS RSE 4012-BS		

Input Specifications (Control Input)

Control voltage U _c	
A1-A2:	24 - 110 VAC/DC ±15%,
A1 A2.	12 mA
A1-A3:	110 - 480 VAC ±15%, 5 mA
	JIIA
Rated insulation voltage	630 V rms
	Overvoltage cat. III (IEC 60664)
Dielectric strength	
Dielectric voltage	2.5 kVAC (rms)
Rated impulse withstand volt.	4 kV (1.2/50 µs)

Output Specifications

AC-53b Integral bypassing of semiconductors		
12A: AC-53b: 3-5: 180		
Startings T _A Inactive		
19 15 11	25°C 30°C 40°C	180 s 225 s 315 s
200 mAA(C rms	
	of semico 12A: AC-5 Startings 19 15 11	of semiconductors 12A: AC-53b: 3-5: Startings T_A 19 25°C 15 30°C

Supply Specifications

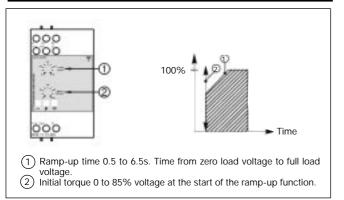
Power supply Rated operational volt. (Ue)	Overvoltage cat. III (IEC 60664)
through terminals L1/L-L2/N	(IEC 60038)
11	115 VAC rms ±15%
23	230 VAC rms ±15%
40	400 VAC rms ±15%
Voltage interruption	≤ 40 ms
Dielectric voltage	None
Rated impulse withstand volt.	4 kV (1.2/50 µs)
Rated operational power	2 VA
supplied from	L1/L- L2/N

General Specifications

Accuracy Ramp up	5.5 - 7.5 s on max. ≤ 0.5 s on min.
Initial torque	70 - 100% on max. 5% on min.
EMC Immunity	Electromagnetic Compatibility acc. to EN 50 082-2
Indication for Power supply ON Ramp up bypassing relay	LED, green LED, yellow
Environment Degree of protection Pollution degree Operating temperature Storage temperature	IP 20 3 -20° to +50°C (-4° to +122°F) -50° to +85°C (-58° to +185°F)
Screw terminals Tightening torque Terminal capacity CE-marking	Max. 0.5 Nm acc. to IEC 60947 2 x 2.5 mm ² Yes
Approvals	UL, CSA (pending)

Mode of Operation

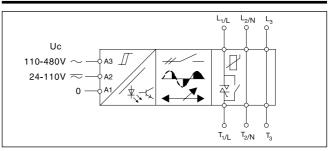
This motor controller is intended to be used to softstart single phase run capacitor induction motors and thereby reduce the stress or wear on gear and belt/chain drives and to give smooth operation of machines. Soft starting is achieved by controlling the motor voltage. During running operation the semiconductor is bypassed by an internal electromechanical relay.

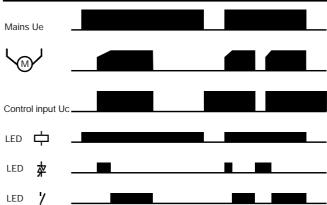

The initial torque can be adjusted from 0 to 85% of the nominal torque. The softstart time can be adjusted from 0.5 to approx. 5 s.

A green LED indicates supply. Two yellow LEDs indicate Ramp up and Running mode.

Overload protection is not provided in this motor controller and must therefore be installed separately.

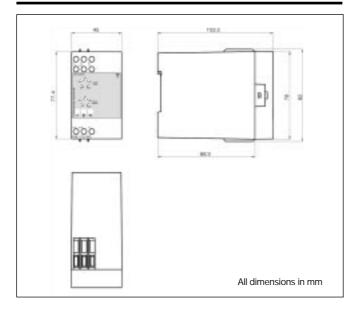
The controller is only switching L1 line. The L2/N and L3 are continuously connected to the load.


Operation Diagram 1


Semiconductor Data

Rated opera- tional current	l ² t for fusing t = 1 - 10 ms	I _{TSM}	dl/dt
12 A	610 A ² s	350 A _p	50 A/µs

Functional Diagram



Operation Diagram 2

Dimensions

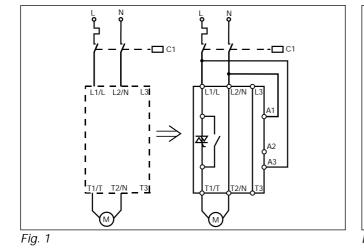
Applications for Single Phase Motors

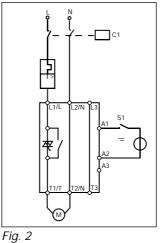
Changing from Direct ON Line start to soft start (Line controlled soft-start)

(Fig. 1)

Changing a Direct On Line start into a soft start is very simple with the RSE softstarting relay:

- 1) Cut the cable to the motor and insert the RSE relay.
- 2) Connect control input to the two mains lines. Set initial torque to minimum and ramp up potentiometer to maximum.
- Power up again adjust the start torque so the motor starts turning immediately after power is applied, and adjust ramp time to the appropriate value.


When C1 is operated, the motor controller will perform soft-start of the motor. When C1 is switched off, the motor will stop, the motor controller will reset and after 0.5 s a new soft-start can be performed.


Please note that the controller does not insulate the motor from the mains. Contactor C1 is therefore needed as a service switch for the motor.

Soft-start

(Fig. 2)

When S1 is closed, soft-start of the motor will be performed according to the setting of the ramp-up potentiometer and the setting of the initial torque potentiometer.

Housing Specifications

Weight	270 g
Housing material	PC/ABS Blend
Colour	Light grey
Terminal block	PBTP
Colour	Black
Bottom clip	POM
Colour	Black
Diode cover	PC
Colour	Grey Transparent
Front knob	PC
Colour	Black

Applications for Single Phase Motors (cont.)

Note:

Time between rampings To prevent the semiconductors from overheating, a certain time between ramping should be allowed. The time between rampings depends on the motor current during ramping and ramp time (see tables below).

Table is valid for ambient temperature 25°C. For higher ambient temperature add 5%/°C to values in the tables. The shaded areas in the tables are for blocked rotor. Do not repeat rampings with blocked rotor.

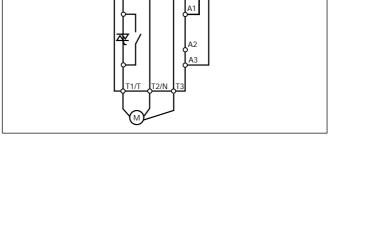
Fusing Considerations

The motor controller provides by-passing of the semiconductor during running operation. Therefore the semiconductor can only be damaged by short-circuit currents during ramp-up and ramp-down function.

A single-phase run capacitor induction motor with correctly installed and adjusted overload protection does not short totally between lines or directly to earth as some other types of loads, e.g. heater bands. In a failing motor there will always be some part of a winding to limit the fault current. If the motor is installed in an environment where the supply to the motor cannot be damaged, the short circuit protection can be considered to be acceptable if the controller is protected by a singlepole thermal-magnetic overload relay.

If the risk of short circuit of the motor cable, the controller or the load exists, then the controller must be protected by ultrafast fuses, e.g. Ferraz 660 gRB 10-25. Fuseholder type PST 10.

RSE .. 12 -BS Time between rampings


Ramp time (sec.) I ramp (A)	1	2	5	10
72	2.5 min	5 min	40 min	N/A
60	1.5 min	3 min	13 min	17 min
48	50 sec	1.5 min	5 min	10 min
36	30 sec	1 min	3 min	7 min
24	15 sec	40 sec	1.5 min	2.5 min
12	10 sec	20 sec	50 sec	70 sec
6	5 sec	9 sec	20 sec	40 sec

Applications for Three Phase Motors

3-phase torque reduction When C1 is closed, a torque reduced start of the 3-phase motor will be performed according to the setting of the ramp-up potentiometer, and the setting of the initial torque potentiometer.

Warning:

When the motor is stopped C1 must be open to remove all 3 phases from the motor. This is necessary to avoid 2-phase running of the motor.

|1/| **ĭ**|2/№

- 🗖 C1